Notifications can be turned off anytime from settings.
Item(s) Added To cart
Qty.0
Something went wrong. Please refresh the page and try again.
Something went wrong. Please refresh the page and try again.
Exchange offer not applicable. New product price is lower than exchange product price
Please check the updated No Cost EMI details on the payment page
Exchange offer is not applicable with this product
Exchange Offer cannot be clubbed with Bajaj Finserv for this product
Product price & seller has been updated as per Bajaj Finserv EMI option
Please apply exchange offer again
Your item has been added to Shortlist.
View AllYour Item has been added to Shopping List
View AllSorry! Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning is sold out.
You will be notified when this product will be in stock
|
About the Book
Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. Since it became possible to analyze random systems using computers, scientists and engineers have sought the means to optimize systems using simulation models. Only recently, however, has this objective had success in practice. Cutting-edge work in computational operations research, including non-linear programming (simultaneous perturbation), dynamic programming (reinforcement learning), and game theory (learning automata) has made it possible to use simulation in conjunction with optimization techniques. As a result, this research has given simulation added dimensions and power that it did not have in the recent past.
The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work.
Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are:
*An accessible introduction to reinforcement learning and parametric-optimization techniques.
*A step-by-step description of several algorithms of simulation-based optimization.
*A clear and simple introduction to the methodology of neural networks.
*A gentle introduction to convergence analysis of some of the methods enumerated above.
*Computer programs for many algorithms of simulation-based optimization. This book is written for students and researchers in the fields of engineering (electrical, industrial and computer), computer science, operations research, management science, and applied mathematics.
The images represent actual product though color of the image and product may slightly differ.
Snapdeal does not select, edit, modify, alter, add or supplement the information, description and other specifications provided by the Seller.
Register now to get updates on promotions and
coupons. Or Download App